	3D-Druck	Kunsts	toffe: N	/laterial	daten F	Richtwe	erte				3D Prints
Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
Lasersintern	Polyamide (PA 12) Polyamid ermöglicht die Produktion voll funktionstüchtiger Prototypen mit hoher mechanischer und thermischer Widerstandsfähigkeit. Teile aus Polyamid haben eine hervorragende Langzeitstabilität und sind gegen die meisten Chemikalien beständig. Sie können durch Imprägnierung wasserdicht gemacht werden. Das SLS Material PA, darf nicht zu medizinischen Zwecken eingesetzt werden.	0.95+/-0.03	D75+/-2	20+/-5	48+/-3	1650+/-150	1500+/-130	ASTM D790 41	4.4 +/-0.4	4.8 +/-0.3	bei 1,82 MPa 86
Lasersintern	Polyamide (PA12) 2210 FR Polyamid ermöglicht die Produktion voll funktionstüchtiger Prototypen. Der Hochleistungskunststoff PA 2210 FR ist ein flammwidriges, halogenfreies Polyamid mit hervorragender Langzeitstabilität und Chemikalienbeständigkeit. Da er auch die UL 94 V0-Test besteht, eignet er sich auch für elektrische und elektronische sowie für Anwendungen in der Luft- und Raumfahrt.	1.06		4	46	2500	2300	65			Schmelz- temperatur ISO 11357-1/- 3

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
Lasersintern	glasgefültes Polyamide (PA12 - GP) Die Benutzung von glassfasergefülltem PA-Pulver										
	(PA-GF) ermöglicht ein wesentlich höher Zug-und Biegemodul. Auch die Wärmeformbeständigkeit liegt sehr hoch darum können										
	Funktionsprüfungen mit hohen thermischen Belastungen erfolgen.	1.22	D80+/-2	6+/-3	51+/-3	3200+/-200	2900+/-150		5.4 +/- 0.6	35	bei 1,82 MPa 110
Lasersintern	aluminiumgefülltes Polyamid (PA12 - AF) Das Grundmaterial ist eine										
	Mischung aus Aluminium- und PA-Pulver, welche eine Metalloptik ermöglicht, die										
	Herstellung porenfreier Teile vereinfacht und gegen hohe Temperaturen beständig ist. Typischer Einsatzbereich ist die										
	Herstellung von steifen, metallisch anmutenden Bauteilen für Anwendungen im										
	Fahrzeugbau (z.B. Windkanalprüfungen oder Teile, die nicht sicherheitsrelevant										
	sind), für die Produktion von Kleinserien, für Anschauungsmodelle										
	(Matalloptik) sowie für den Maschinen- und Vorrichtungsbau.										bei 1,82 MPa
		1.36+/-0.05	D76+/-2	3.5+/-1	48+/-3	3800+/-150	3600+/-150		4.6+/-0.3	29	130

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
Lasersintern	mineralgefülltes Polyamid (PA6 - MF) PA6 MF ist ein mineralgefülltes Polyamid mit ausgezeichneter Zugfestigkeit, Steifigkeit, thermischen Eigenschaften und chemischer Beständigkeit. Dieser Hochleistungswerkstoff ist ideal für Funktionsprototypen, insbesondere in der Automobilindustrie, die ein steifes Material benötigt, das das sowohl eine hohe thermische und chemische Beständigkeit hat.	1.44	D76+/-2	3.5+/-1	62 XY / 40 Z	3300 XY / 3100 Z	2750 XY / 2600 Z	85 XY / 55 Z	3.1 XY / 2.3 Z	27.8	bei 0,45 MPa 209 bei 1,82 MPa 121
Lasersintern	Polypropylen (PP) Polypropylen ist ein häuffig verwendeter Kunststoff in der industriellen Fertigung. 3D-gedrucktes PP ist ein gelbliches Material mit einer hohen Bruchdehnung und einter niedrigen Dichte. Dank seiner Robustheit, Ermüdungsfestigkeit und seines geringen Gewichts eignet sich PP beispielsweise für funktionelle Prototypen, für Bauteile mit Schnappverbindungen oder Filmscharnieren. Einsatzgebiete sind u.a. Automobil- und Maschinenbauteile, aber auch Verpackungen.			179%	21.4+/-3	907	698				

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
MJF	Polyamid (PA 12) Dieser Werkstoff eignet sich für funktionale Prototypen und auch für Funktionsteile. Dadurch sind MJF Teile auch die ideale Wahl, wenn eine detailliertere Oberflächenqualität oder dünne Wandstärken erforderlich sind.	1.01		9 - 17 %	48	1700				4.2 YX / 3.8 Z	bei 0,45 Mpa 175 bei 1,81 Mpa 95
MJF	Polypropylen (PP) Dieses Material kann im Automobil- oder Konsumgütersektor eingesetzt werden. PP bietet eine hohe chemische Beständigkeit, eine hohe Bruchdehnung und eine geringe Feuchtigkeitsaufnahme.	0.89		14 - 20 %	28	1400			3.0 - 3.5		bei 0,45 Mpa 100 bei 1,81 Mpa 60
MJF	Thermoplastisches Polyurethan TPU Thermoplastisches Polyurethan, ist ein flexibler Werkstoff mit hoher Reissdehnung. TPU kombiniert dauerhafte Elastizität mit hoher Verschleiss- und Abriebfestigkeit. Es ist somit für Prototypen und Fertigungsanwendungen geeignet, bei denen eine gummiartige Elastizität über einen weiten Temperaturbereich gefragt sind.	1.2	88 A	220 XY / 137 Z	9 XY / 7 Z	75 XY / 85 Z	75		kein Bruch	kein Bruch	

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
FDM	ABS Ein ABS-Prototyp hat bis zu ca. 80 % der Stärke eines Spritzguss-ABS Teils, was bedeutet, dass er besonders gut für funktionelle Anwendungen geeignet ist.	1.05		6	22	1627	1834	41	107	214	bei 0,45 Mpa 90 °C bei 1,81 Mpa 76 °C
FDM	PC-ABS PC-ABS ist eine Mischung aus Polycarbonat und ABS- Kunststoff, welche die Stärke von PC mit der Flexibilität von ABS verbindet.	1.2			41	1917	1931	68	196	481	bei 0,45 Mpa 110 °C bei 1,81 Mpa 96 °C
FDM	PC Polycarbonat ist ein häufig verwendetes Thermoplast mit hoher Schlagfestigkeit und einer guten Temperaturbeständigkeit.	1.2		4.8	68	2280	2234	104	53	320	bei 0,45 Mpa 138 °C bei 1,81 Mpa 127 °C
FDM	ABS-ESD7 Ein Prototype dieses Materials erreicht bis zu ca. 80% der Festigkeit eines spritzgegossenen ABS-Teils. Dadurch ist ABS-ESD7 hervorragend geeignet für funktionelle Prototypen.	ASTM D257 Volumenwide rstand 3,0*109 - 4,0*1010 Ohm-cm	ASTM D257 Oberflächenw iderstand 109 - 106ohm		36	2400	2400	61	28	55	bei 0,45 Mpa 96 °C bei 1,81 Mpa 82 °C

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
FDM	Ultem 9085 schwarz										
	ULTEM ist ein Thermoplast, der sich in vielen Eigenschaften hervor hebt. Das Material ist stabil, schwer entflammbar (UL 94-V0 Norm) und zeichnet sich durch ein besonders günstiges Verhältnis von Festigkeit zum Eigengewicht aus. Diese Materialeigenschaften erlauben neue Einsatzmöglichkeiten für Additive Manufacturing sowie Teile für Endanwendungen.										bei 1,81 Mpa
		1,27		5,4 XY / 2.1 Z	70	2530	2470	115	95	770	173 °C

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
Stereo-	SLA P 1500										
lithographie	Das PP-ähnliche Material ist vergleichbar mit technischen Kunststoffen; geeignet für harte, funktionsgerechte Prototypen; vielfältige Anwendungsbereiche (z. B. Fahrzeugteile, Elektronikgehäuse, medizinische Produkte usw.)	1.18 - 1.2	80-82 D	15-25	30-32	1227-1462	1310-1455	41-46	48-53		bei 0,46 MPa 52-61
Stereo-		1110 112	00 02 0	10 20	00 02	1227 1102	1010 1100	11.15	1.0 00		bei 0,46 Mpa
lithographie	SLA 2700 W Das weisse Material ist für solide, wasserdichte Prototypen mit ABS- und PBT-ähnlichen Spezifikationen geeignet. Wie Teile zur Strömungsanalyse von Wasser und zur Windkanalprüfung. Weitere Anwendungen sind Funktionsprototypen und High-End-Fertigmodelle.	1.18 - 1.2	81 D	11-20	47.1-53.6	2650-2880	2040-2370	63.1-74.16	20-30		45,9-54,5 bei 1,81 Mpa 49.0-49.7
Stereo- lithographie	SLA 2700 T Das transparente Material ist für solide, wasserdichte Prototypen mit ABS- und PBT-ähnlichen Spezifikationen geeignet. Wie Teile zur Strömungsanalyse von Wasser und zur Windkanalprüfung. Weitere Anwendungen sind Funktionsprototypen und High-										bei 0,46 Mpa 45,9-54,5
	End-Fertigmodelle.	1.18 - 1.2	81 D	11-20	47.1-53.6	2655-2880	2040-2370	63.1-74.16	20-30		bei 1,81 Mpa 49.0-49.7

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
Stereo- lithographie	Extreme Stärke und Widerstandsfähigkeit wird durch dieses Material erreicht. SLA Solid 3000 ist ein stereolithographisches Material, welches einen hohen Grad an Steifigkeit mit einer hohen Stossfestigkeit verbindet. Teile aus diesem Material sind nicht nur robust, sondern auch äusserst funktionell, so dass sie in einer Vielzahl von Anwendungen eingesetzt										bei 0,46 MPa 53 - 57
Stereo- lithographie	SLA Progen W Progen W eignet sich für allgemeine Anwendungszwecke mit ABS-ähnlichen Spezifikationen und besonders für den Marktbereich, der genaue RTV-Muster, solide Konzeptmodelle und präzise Teile fordert.	1.18 - 1.2 1.18 - 1.2	84 D 88 D	4.6 - 7.2	60 - 66 43.8	2970 - 3285 2310	1843 - 2017 2130	63 - 74 70.5	30 - 35 22		bei 1.82 MPa 49 - 57 bei 0,46 Mpa 56 bei 1,81 Mpa 47
Stereo- lithographie	SLA XTR Dieses Harz mit rundum guten Eigenschaften, einschliesslich hoher Schlagfestigkeit, hoher Bruchdehnung und ausgezeichneter Oberflächenqualität. XTR ist ideal für robuste Gehäuse, Baugruppen mit Schraubverschluss und für den Austausch CNC-bearbeiteter Teile.	1.18 - 1.2	86 D	14-22	38-44	1790-1980	1520-2070	52 - 71	35-52		bei 0,45 Mpa 62 bei 1,81 Mpa 54

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
Stereo- lithographie	Epoxy Bei der Wahl von Epoxid erlauben Sie uns, aus den oben genannten stereolithographischen Materialien das auszuwählen, das für die Geometrie Ihres Designs am besten geeignet ist, ohne mechanische oder andere Eigenschaften zu berücksichtigen. Stereolithographische Materialien werden hauptsächlich für unkritische Vorführteile benutzt.	1.18 - 1.2	80-82	15-25	30-32	1227-1462	1310-1455	41-46	48-53	48-53	bei 0,46 MPa 52-61

Technologie	Material	Dichte g/cm2	Härte, Shore	Bruchdehnung %	Zugfestigkeit MPa	Zugmodul MPa	Biegemodul MPa	Biegefestigkeit MPa	Kerbschlag- zähigkeit kJ/m2	Schlagzähigkeit Charpy kJ/m2	Wärmeform- beständigkeit °C
	Prüfnorm	@ 25°C	ASTM 2240 ISO 7619-1	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D638M EN ISO 527	ASTM D790M EN ISO 178	ASTM D638M	ASTM D256A EN ISO 179	ASTM D256A EN ISO 179	ASTM D648
PolyJet	Vero transparent Die hohe Dimensionsstabilität und glatte Oberflächenqualität machen Vero transparent zu einem idealen Material für den detailierten Modellbau oder für Prototypen von Klarsichtteilen. Es ist auch ideal für Teile, die die Sichtbarkeit von von Flüssigkeitsströmen erfordern.	1.18	83-86D	10 - 25	49.8	2000-3000	2200-3200	75-110	20-30		bei 0,45 Mpa 45-50 bei 1,82 Mpa 45-50
PolyJet	Vero farbig, transluzent Vero ist ein biegefestes Universalharz mit guten mechanischen Eigenschaften.	1.17	83 - 86 D	10 - 25	50-65	2495	2200-3200	75-110	20-30		bei 0,45 Mpa 45-50 bei 1,82 Mpa 45-50
PolyJet	Agilus weich, schwarz Agilus schwarz ist ein flexibles, gummiartiges Harz mit aussergewöhnlicher Bruchdehnung, so dass es für Prototypen aus Gummikomponenten wie Dichtungen, rutschfesten Oberflächen u. Ä. besonders geeignet ist. Agilus-Materialien können kombiniert werden, so dass diverse Shore-Werte erreicht werden.	1.14	28 - 95 A	170 - 25	0.5 - 25						

Bitte beachten Sie, dass diese Werte abhängig von der Art und XYZ Richtung des Materialaufbaus sind und deshalb nur Richtwerte sind!

Schreibfehler vorbehalten.

www.3d-prints.ch